Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiome ; 19(1): 3, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38217061

RESUMO

BACKGROUND: Base Mine Lake (BML) is the first full-scale end pit lake for the oil sands mining industry in Canada. BML sequesters oil sands tailings under a freshwater cap and is intended to develop into a functional ecosystem that can be integrated into the local watershed. The first stage of successful reclamation requires the development of a phytoplankton community supporting a typical boreal lake food web. To assess the diversity and dynamics of the phytoplankton community in BML at this reclamation stage and to set a baseline for future monitoring, we examined the phytoplankton community in BML from 2016 through 2021 using molecular methods (targeting the 23S, 18S, and 16S rRNA genes) and microscopic methods. Nearby water bodies were used as controls for a freshwater environment and an active tailings pond. RESULTS: The phytoplankton community was made up of diverse bacteria and eukaryotes typical of a boreal lake. Microscopy and molecular data both identified a phytoplankton community comparable at the phylum level to that of natural boreal lakes, dominated by Chlorophyta, Cryptophyta, and Cyanophyta, with some Bacillariophyta, Ochrophyta, and Euglenophyta. Although many of the same genera were prominent in both BML and the control freshwater reservoir, there were differences at the species or ASV level. Total diversity in BML was also consistently lower than the control freshwater site, but consistently higher than the control tailings pond. The phytoplankton community composition in BML changed over the 5-year study period. Some taxa present in 2016-2019 (e.g., Choricystis) were no longer detected in 2021, while some dinophytes and haptophytes became detectable in small quantities starting in 2019-2021. Different quantification methods (qPCR analysis of 23S rRNA genes, and microscopic estimates of populations and total biomass) did not show a consistent directional trend in total phytoplankton over the 5-year study, nor was there any consistent increase in phytoplankton species diversity. The 5-year period was likely an insufficient time frame for detecting community trends, as phytoplankton communities are highly variable at the genus and species level. CONCLUSIONS: BML supports a phytoplankton community composition somewhat unique from control sites (active tailings and freshwater lake) and is still changing over time. However, the most abundant genera are typical of natural boreal lakes and have the potential to support a complex aquatic food web, with many of its identified major phytoplankton constituents known to be primary producers in boreal lake environments.

2.
Proc Natl Acad Sci U S A ; 119(32): e2114799119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914169

RESUMO

Natural and anthropogenic wetlands are major sources of the atmospheric greenhouse gas methane. Methane emissions from wetlands are mitigated by methanotrophic bacteria at the oxic-anoxic interface, a zone of intense redox cycling of carbon, sulfur, and nitrogen compounds. Here, we report on the isolation of an aerobic methanotrophic bacterium, 'Methylovirgula thiovorans' strain HY1, which possesses metabolic capabilities never before found in any methanotroph. Most notably, strain HY1 is the first bacterium shown to aerobically oxidize both methane and reduced sulfur compounds for growth. Genomic and proteomic analyses showed that soluble methane monooxygenase and XoxF-type alcohol dehydrogenases are responsible for methane and methanol oxidation, respectively. Various pathways for respiratory sulfur oxidation were present, including the Sox-rDsr pathway and the S4I system. Strain HY1 employed the Calvin-Benson-Bassham cycle for CO2 fixation during chemolithoautotrophic growth on reduced sulfur compounds. Proteomic and microrespirometry analyses showed that the metabolic pathways for methane and thiosulfate oxidation were induced in the presence of the respective substrates. Methane and thiosulfate could therefore be independently or simultaneously oxidized. The discovery of this versatile bacterium demonstrates that methanotrophy and thiotrophy are compatible in a single microorganism and underpins the intimate interactions of methane and sulfur cycles in oxic-anoxic interface environments.


Assuntos
Bactérias , Metano , Enxofre , Bactérias/metabolismo , Metano/metabolismo , Oxirredução , Proteômica , Enxofre/metabolismo , Tiossulfatos/metabolismo
3.
mSystems ; 7(1): e0099121, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35166562

RESUMO

Microbial community diversity is often correlated with physical environmental stresses like acidity, salinity, and temperature. For example, species diversity usually declines with increasing temperature above 20°C. However, few studies have examined whether the genetic functional diversity of community metagenomes varies in a similar way as species diversity along stress gradients. Here, we investigated bacterial communities in thermal spring sediments ranging from 21 to 88°C, representing communities of 330 to 3,800 bacterial and archaeal species based on 16S rRNA gene amplicon analysis. Metagenomes were sequenced, and Pfam abundances were used as a proxy for metagenomic functional diversity. Significant decreases in both species diversity and Pfam diversity were observed with increasing temperatures. The relationship between Pfam diversity and species diversity followed a power function with the steepest slopes in the high-temperature, low-diversity region of the gradient. Species additions to simple thermophilic communities added many new Pfams, while species additions to complex mesophilic communities added relatively fewer new Pfams, indicating that species diversity does not approach saturation as rapidly as Pfam diversity does. Many Pfams appeared to have distinct temperature ceilings of 60 to 80°C. This study suggests that temperature stress limits both taxonomic and functional diversity of microbial communities, but in a quantitatively different manner. Lower functional diversity at higher temperatures is probably due to two factors, including (i) the absence of many enzymes not adapted to thermophilic conditions, and (ii) the fact that high-temperature communities are comprised of fewer species with smaller average genomes and, therefore, contain fewer rare functions. IMPORTANCE Only recently have microbial ecologists begun to assess quantitatively how microbial species diversity correlates with environmental factors like pH, temperature, and salinity. However, still, very few studies have examined how the number of distinct biochemical functions of microbial communities, termed functional diversity, varies with the same environmental factors. Our study examined 18 microbial communities sampled across a wide temperature gradient and found that increasing temperature reduced both species and functional diversity, but in different ways. Initially, functional diversity increased sharply with increasing species diversity but eventually plateaued, following a power function. This pattern has been previously predicted in theoretical models, but our study validates this predicted power function with field metagenomic data. This study also presents a unique overview of the distribution of metabolic functions along a temperature gradient, demonstrating that many functions have temperature "ceilings" above which they are no longer found.


Assuntos
Bactérias , Microbiota , Temperatura , RNA Ribossômico 16S/genética , Archaea
4.
Appl Environ Microbiol ; 88(3): e0145521, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34818104

RESUMO

Base Mine Lake (BML) is the first full-scale demonstration end pit lake for the oil sands mining industry in Canada. We examined aerobic methanotrophic bacteria over all seasons for 5 years in this dimictic lake. Methanotrophs comprised up to 58% of all bacterial reads in 16S rRNA gene amplicon sequencing analyses (median 2.8%), and up to 2.7 × 104 cells mL-1 of water (median 0.5 × 103) based on qPCR of pmoA genes. Methanotrophic activity and populations in the lake water were highest during fall turnover and remained high through the winter ice-covered period into spring turnover. They declined during summer stratification, especially in the epilimnion. Three methanotroph genera (Methylobacter, Methylovulum, and Methyloparacoccus) cycled seasonally, based on both relative and absolute abundance measurements. Methylobacter and Methylovulum populations peaked in winter/spring, when methane oxidation activity was psychrophilic. Methyloparacoccus populations increased in the water column through summer and fall, when methane oxidation was mesophilic, and also predominated in the underlying tailings sediment. Other, less abundant genera grew primarily during summer, possibly due to distinct CH4/O2 microniches created during thermal stratification. These data are consistent with temporal and spatial niche differentiation based on temperature, CH4 and O2. This pit lake displays methane cycling and methanotroph population dynamics similar to natural boreal lakes. IMPORTANCE The study examined methanotrophic bacteria in an industrial end pit lake, combining molecular DNA methods (both quantitative and descriptive) with biogeochemical measurements. The lake was sampled over 5 years, in all four seasons, as often as weekly, and included sub-ice samples. The resulting multiseason and multiyear data set is unique in its size and intensity, and allowed us to document clear and consistent seasonal patterns of growth and decline of three methanotroph genera (Methylobacter, Methylovulum, and Methyloparacoccus). Laboratory experiments suggested that one major control of this succession was niche partitioning based on temperature. The study helps to understand microbial dynamics in engineered end pit lakes, but we propose that the dynamics are typical of boreal stratified lakes and widely applicable in microbial ecology and limnology. Methane-oxidizing bacteria are important model organisms in microbial ecology and have implications for global climate change.


Assuntos
Lagos , Campos de Petróleo e Gás , Bactérias , Lagos/microbiologia , Metano , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Estações do Ano
5.
ISME J ; 16(5): 1337-1347, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34969995

RESUMO

With advances in DNA sequencing and miniaturized molecular biology workflows, rapid and affordable sequencing of single-cell genomes has become a reality. Compared to 16S rRNA gene surveys and shotgun metagenomics, large-scale application of single-cell genomics to whole microbial communities provides an integrated snapshot of community composition and function, directly links mobile elements to their hosts, and enables analysis of population heterogeneity of the dominant community members. To that end, we sequenced nearly 500 single-cell genomes from a low diversity hot spring sediment sample from Dewar Creek, British Columbia, and compared this approach to 16S rRNA gene amplicon and shotgun metagenomics applied to the same sample. We found that the broad taxonomic profiles were similar across the three sequencing approaches, though several lineages were missing from the 16S rRNA gene amplicon dataset, likely the result of primer mismatches. At the functional level, we detected a large array of mobile genetic elements present in the single-cell genomes but absent from the corresponding same species metagenome-assembled genomes. Moreover, we performed a single-cell population genomic analysis of the three most abundant community members, revealing differences in population structure based on mutation and recombination profiles. While the average pairwise nucleotide identities were similar across the dominant species-level lineages, we observed differences in the extent of recombination between these dominant populations. Most intriguingly, the creek's Hydrogenobacter sp. population appeared to be so recombinogenic that it more closely resembled a sexual species than a clonally evolving microbe. Together, this work demonstrates that a randomized single-cell approach can be useful for the exploration of previously uncultivated microbes from community composition to population structure.


Assuntos
Fontes Termais , Bactérias/genética , Metagenoma , Metagenômica , RNA Ribossômico 16S/genética
6.
ISME J ; 15(12): 3636-3647, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34158629

RESUMO

Short-chain alkanes (SCA; C2-C4) emitted from geological sources contribute to photochemical pollution and ozone production in the atmosphere. Microorganisms that oxidize SCA and thereby mitigate their release from geothermal environments have rarely been studied. In this study, propane-oxidizing cultures could not be grown from acidic geothermal samples by enrichment on propane alone, but instead required methane addition, indicating that propane was co-oxidized by methanotrophs. "Methylacidiphilum" isolates from these enrichments did not grow on propane as a sole energy source but unexpectedly did grow on C3 compounds such as 2-propanol, acetone, and acetol. A gene cluster encoding the pathway of 2-propanol oxidation to pyruvate via acetol was upregulated during growth on 2-propanol. Surprisingly, this cluster included one of three genomic operons (pmoCAB3) encoding particulate methane monooxygenase (PMO), and several physiological tests indicated that the encoded PMO3 enzyme mediates the oxidation of acetone to acetol. Acetone-grown resting cells oxidized acetone and butanone but not methane or propane, implicating a strict substrate specificity of PMO3 to ketones instead of alkanes. Another PMO-encoding operon, pmoCAB2, was induced only in methane-grown cells, and the encoded PMO2 could be responsible for co-metabolic oxidation of propane to 2-propanol. In nature, propane probably serves primarily as a supplemental growth substrate for these bacteria when growing on methane.


Assuntos
Acetona , Oxigenases , Metano , Oxirredução , Oxigenases/genética , Verrucomicrobia
7.
mBio ; 12(3)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006650

RESUMO

The recent leveraging of genome-resolved metagenomics has generated an enormous number of genomes from novel uncultured microbial lineages yet left many clades undescribed. Here, we present a global analysis of genomes belonging to Binatota (UBP10), a globally distributed, yet-uncharacterized bacterial phylum. All orders in Binatota encoded the capacity for aerobic methylotrophy using methanol, methylamine, sulfomethanes, and chloromethanes as the substrates. Methylotrophy in Binatota was characterized by order-specific substrate degradation preferences, as well as extensive metabolic versatility, i.e., the utilization of diverse sets of genes, pathways, and combinations to achieve a specific metabolic goal. The genomes also encoded multiple alkane hydroxylases and monooxygenases, potentially enabling growth on a wide range of alkanes and fatty acids. Pigmentation is inferred from a complete pathway for carotenoids (lycopene, ß- and γ-carotenes, xanthins, chlorobactenes, and spheroidenes) production. Further, the majority of genes involved in bacteriochlorophyll a, c, and d biosynthesis were identified, although absence of key genes and failure to identify a photosynthetic reaction center preclude proposing phototrophic capacities. Analysis of 16S rRNA databases showed the preferences of Binatota to terrestrial and freshwater ecosystems, hydrocarbon-rich habitats, and sponges, supporting their potential role in mitigating methanol and methane emissions, breakdown of alkanes, and their association with sponges. Our results expand the lists of methylotrophic, aerobic alkane-degrading, and pigment-producing lineages. We also highlight the consistent encountering of incomplete biosynthetic pathways in microbial genomes, a phenomenon necessitating careful assessment when assigning putative functions based on a set-threshold of pathway completion.IMPORTANCE A wide range of microbial lineages remain uncultured, yet little is known regarding their metabolic capacities, physiological preferences, and ecological roles in various ecosystems. We conducted a thorough comparative genomic analysis of 108 genomes belonging to the Binatota (UBP10), a globally distributed, yet-uncharacterized bacterial phylum. We present evidence that members of the order Binatota specialize in methylotrophy and identify an extensive repertoire of genes and pathways mediating the oxidation of multiple one-carbon (C1) compounds in Binatota genomes. The occurrence of multiple alkane hydroxylases and monooxygenases in these genomes was also identified, potentially enabling growth on a wide range of alkanes and fatty acids. Pigmentation is inferred from a complete pathway for carotenoids production. We also report on the presence of incomplete chlorophyll biosynthetic pathways in all genomes and propose several evolutionary-grounded scenarios that could explain such a pattern. Assessment of the ecological distribution patterns of the Binatota indicates preference of its members to terrestrial and freshwater ecosystems characterized by high methane and methanol emissions, as well as multiple hydrocarbon-rich habitats and marine sponges.


Assuntos
Alcanos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Genoma Bacteriano , Genômica/métodos , Pigmentos Biológicos/biossíntese , Bactérias/classificação , Ecossistema , Filogenia , Pigmentos Biológicos/genética , RNA Ribossômico 16S/genética
8.
Front Microbiol ; 12: 787651, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087491

RESUMO

GAL08 are bacteria belonging to an uncultivated phylogenetic cluster within the phylum Acidobacteria. We detected a natural population of the GAL08 clade in sediment from a pH-neutral hot spring located in British Columbia, Canada. To shed light on the abundance and genomic potential of this clade, we collected and analyzed hot spring sediment samples over a temperature range of 24.2-79.8°C. Illumina sequencing of 16S rRNA gene amplicons and qPCR using a primer set developed specifically to detect the GAL08 16S rRNA gene revealed that absolute and relative abundances of GAL08 peaked at 65°C along three temperature gradients. Analysis of sediment collected over multiple years and locations revealed that the GAL08 group was consistently a dominant clade, comprising up to 29.2% of the microbial community based on relative read abundance and up to 4.7 × 105 16S rRNA gene copy numbers per gram of sediment based on qPCR. Using a medium quality threshold, 25 single amplified genomes (SAGs) representing these bacteria were generated from samples taken at 65 and 77°C, and seven metagenome-assembled genomes (MAGs) were reconstructed from samples collected at 45-77°C. Based on average nucleotide identity (ANI), these SAGs and MAGs represented three separate species, with an estimated average genome size of 3.17 Mb and GC content of 62.8%. Phylogenetic trees constructed from 16S rRNA gene sequences and a set of 56 concatenated phylogenetic marker genes both placed the three GAL08 bacteria as a distinct subgroup of the phylum Acidobacteria, representing a candidate order (Ca. Frugalibacteriales) within the class Blastocatellia. Metabolic reconstructions from genome data predicted a heterotrophic metabolism, with potential capability for aerobic respiration, as well as incomplete denitrification and fermentation. In laboratory cultivation efforts, GAL08 counts based on qPCR declined rapidly under atmospheric levels of oxygen but increased slightly at 1% (v/v) O2, suggesting a microaerophilic lifestyle.

9.
Front Microbiol ; 11: 1848, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013724

RESUMO

Recent discoveries suggest that the candidate superphyla Patescibacteria and DPANN constitute a large fraction of the phylogenetic diversity of Bacteria and Archaea. Their small genomes and limited coding potential have been hypothesized to be ancestral adaptations to obligate symbiotic lifestyles. To test this hypothesis, we performed cell-cell association, genomic, and phylogenetic analyses on 4,829 individual cells of Bacteria and Archaea from 46 globally distributed surface and subsurface field samples. This confirmed the ubiquity and abundance of Patescibacteria and DPANN in subsurface environments, the small size of their genomes and cells, and the divergence of their gene content from other Bacteria and Archaea. Our analyses suggest that most Patescibacteria and DPANN in the studied subsurface environments do not form specific physical associations with other microorganisms. These data also suggest that their unusual genomic features and prevalent auxotrophies may be a result of ancestral, minimal cellular energy transduction mechanisms that lack respiration, thus relying solely on fermentation for energy conservation.

10.
Int J Syst Evol Microbiol ; 70(4): 2499-2508, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32559826

RESUMO

An aerobic methane oxidizing bacterium, designated XLMV4T, was isolated from the oxic surface layer of an oil sands tailings pond in Alberta, Canada. Strain XLMV4T is capable of growth on methane and methanol as energy sources. NH4Cl and sodium nitrate are nitrogen sources. Cells are Gram-negative, beige to yellow-pigmented, motile (via a single polar flagellum), short rods 2.0-3.3 µm in length and 1.0-1.6 µm in width. A thick capsule is produced. Surface glycoprotein or cup shape proteins typical of the genera Methylococcus, Methylothermus and Methylomicrobium were not observed. Major isoprenoid quinones are Q-8 and Q-7 at an approximate molar ratio of 71 : 22. Major polar lipids are phosphoglycerol and ornithine lipids. Major fatty acids are C16 : 1 ω8+C16 : 1 ω7 (34 %), C16 : 1 ω5 (16 %), and C18 : 1 ω7 (11 %). Optimum growth is observed at pH 8.0 and 25 °C. The DNA G+C content based on a draft genome sequence is 46.7 mol%. Phylogenetic analysis of 16S rRNA genes and a larger set of conserved genes place strain XLMV4T within the class Gammaproteobacteria and family Methylococcaceae, most closely related to members of the genera Methylomicrobium and Methylobacter (95.0-97.1 % 16S rRNA gene sequence identity). In silico genomic predictions of DNA-DNA hybridization values of strain XLMV4T to the nearest phylogenetic neighbours were all below 26 %. On the basis of the data presented, strain XLMV4T is considered to represent a new genus and species for which the name Methylicorpusculum oleiharenae is proposed. Strain XLMV4T (=DSMZ DSM 27269=ATCC TSD-186) is the type strain.


Assuntos
Methylococcaceae/classificação , Campos de Petróleo e Gás/microbiologia , Filogenia , Lagoas/microbiologia , Alberta , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Metano/metabolismo , Metanol/metabolismo , Methylococcaceae/isolamento & purificação , Hibridização de Ácido Nucleico , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
11.
Environ Microbiol ; 22(8): 3143-3157, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32372527

RESUMO

Members of the bacterial candidate phylum WPS-2 (or Eremiobacterota) are abundant in several dry, bare soil environments. In a bare soil deposited by an extinct iron-sulfur spring, we found that WPS-2 comprised up to 24% of the bacterial community and up to 108 cells per g of soil based on 16S rRNA gene sequencing and quantification. A single genus-level cluster (Ca. Rubrimentiphilum) predominated in bare soils but was less abundant in adjacent forest. Nearly complete genomes of Ca. Rubrimentiphilum were recovered as single amplified genomes (SAGs) and metagenome-assembled genomes (MAGs). Surprisingly, given the abundance of WPS-2 in bare soils, the genomes did not indicate any capacity for autotrophy, phototrophy, or trace gas metabolism. Instead, they suggest a predominantly aerobic organoheterotrophic lifestyle, perhaps based on scavenging amino acids, nucleotides, and complex oligopeptides, along with lithotrophic capacity on thiosulfate. Network analyses of the entire community showed that some species of Chloroflexi, Actinobacteria, and candidate phylum AD3 (or Dormibacterota) co-occurred with Ca. Rubrimentiphilum and may represent ecological or metabolic partners. We propose that Ca. Rubrimentiphilum act as efficient heterotrophic scavengers. Combined with previous studies, these data suggest that the phylum WPS-2 includes bacteria with diverse metabolic capabilities.


Assuntos
Bactérias/isolamento & purificação , Microbiologia do Solo , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Chloroflexi/classificação , Chloroflexi/genética , Chloroflexi/isolamento & purificação , Genômica , Metagenoma , Filogenia , RNA Ribossômico 16S , Solo
12.
J Eukaryot Microbiol ; 67(1): 86-99, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31432582

RESUMO

Reclamation of anthropogenically impacted environments is a critical issue worldwide. In the oil sands extraction industry of Alberta, reclamation of mining-impacted areas, especially areas affected by tailings waste, is an important aspect of the mining life cycle. A reclamation technique currently under study is water-capping, where tailings are capped by water to create an end-pit lake (EPL). Base Mine Lake (BML) is the first full-scale end-pit lake in the Alberta oil sands region. In this study, we sequenced eukaryotic 18S rRNA genes recovered from 92 samples of Base Mine Lake water in a comprehensive sampling programme covering the ice-free period of 2015. The 565 operational taxonomic units (OTUs) generated revealed a dynamic and diverse community including abundant Microsporidia, Ciliata and Cercozoa, though 41% of OTUs were not classifiable below the phylum level by comparison to 18S rRNA databases. Phylogenetic analysis of five heterotrophic phyla (Cercozoa, Fungi, Ciliata, Amoebozoa and Excavata) revealed substantial novel diversity, with many clusters of OTUs that were more similar to each other than to any reference sequence. All of these groups are entirely or mostly heterotrophic, as a relatively small number of definitively photosynthetic clades were amplified from the BML samples.


Assuntos
Cercozoários/classificação , Cilióforos/classificação , Lagos/parasitologia , Microbiota , Microsporídios/classificação , Alberta , Mineração , Campos de Petróleo e Gás/parasitologia , Filogenia
13.
ISME J ; 14(3): 714-726, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796935

RESUMO

Copper-containing membrane monooxygenases (CuMMOs) are encoded by xmoCAB(D) gene clusters and catalyze the oxidation of methane, ammonia, or some short-chain alkanes and alkenes. In a metagenome constructed from an oilsands tailings pond we detected an xmoCABD gene cluster with <59% derived protein sequence identity to genes from known bacteria. Stable isotope probing experiments combined with a specific xmoA qPCR assay demonstrated that the bacteria possessing these genes were incapable of methane assimilation, but did grow on ethane and propane. Single-cell amplified genomes (SAGs) from propane-enriched samples were screened with the specific PCR assay to identify bacteria possessing the target gene cluster. Multiple SAGs of Betaproteobacteria belonging to the genera Rhodoferax and Polaromonas possessed homologues of the metagenomic xmoCABD gene cluster. Unexpectedly, each of these two genera also possessed other xmoCABD paralogs, representing two additional lineages in phylogenetic analyses. Metabolic reconstructions from SAGs predicted that neither bacterium encoded enzymes with the potential to support catabolic methane or ammonia oxidation, but that both were capable of higher n-alkane degradation. The involvement of the encoded CuMMOs in alkane oxidation was further suggested by reverse transcription PCR analyses, which detected elevated transcription of the xmoA genes upon enrichment of water samples with propane as the sole energy source. Enrichments, isotope incorporation studies, genome reconstructions, and gene expression studies therefore all agreed that the unknown xmoCABD operons did not encode methane or ammonia monooxygenases, but rather n-alkane monooxygenases. This study broadens the known diversity of CuMMOs and identifies these enzymes in non-nitrifying Betaproteobacteria.


Assuntos
Alcanos/metabolismo , Proteínas de Bactérias/metabolismo , Betaproteobacteria/enzimologia , Oxigenases de Função Mista/metabolismo , Amônia/metabolismo , Proteínas de Bactérias/genética , Betaproteobacteria/classificação , Betaproteobacteria/genética , Betaproteobacteria/metabolismo , Cobre/metabolismo , Metagenoma , Metano/metabolismo , Oxigenases de Função Mista/genética , Família Multigênica , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia , Lagoas/microbiologia
14.
FEMS Microbiol Lett ; 366(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31054238

RESUMO

Aerobic methanotrophs play critical roles in the global carbon cycle, but despite their environmental ubiquity, they are phylogenetically restricted. Via bioinformatic analyses, it is shown that methanotrophy likely arose from methylotrophy from the lateral gene transfer of either of the two known forms of methane monooxygenase (particulate and soluble methane monooxygenases). Moreover, it appears that both known forms of pyrroloquinoline quinone-dependent methanol dehydrogenase (MeDH) found in methanotrophs-the calcium-containing Mxa-MeDH and the rare earth element-containing Xox-MeDH-were likely encoded in the genomes before the acquisition of the methane monooxygenases (MMOs), but that some methanotrophs subsequently received an additional copy of Xox-MeDH-encoding genes via lateral gene transfer. Further, data are presented that indicate the evolution of methanotrophy from methylotrophy not only required lateral transfer of genes encoding for methane monooxygenases, but also likely the pre-existence of a means of collecting copper. Given the emerging interest in valorizing methane via biological platforms, it is recommended that future strategies for heterologous expression of methane monooxygenase for conversion of methane to methanol also include cloning of genes encoding mechanism(s) of copper uptake, especially for expression of particulate methane monooxygenase.


Assuntos
Evolução Molecular , Genoma Bacteriano , Metano/metabolismo , Proteobactérias/classificação , Proteobactérias/enzimologia , Aerobiose , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Cobre/metabolismo , Transferência Genética Horizontal , Genoma , Metanol/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Filogenia
15.
Front Microbiol ; 9: 2493, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30420840

RESUMO

Copper membrane monooxygenases (CuMMOs) oxidize ammonia, methane and some short-chain alkanes and alkenes. They are encoded by three genes, usually in an operon of xmoCAB. We aligned xmo operons from 66 microbial genomes, including members of the Alpha-, Beta-, and Gamma-proteobacteria, Verrucomicrobia, Actinobacteria, Thaumarchaeota and the candidate phylum NC10. Phylogenetic and compositional analyses were used to reconstruct the evolutionary history of the enzyme and detect potential lateral gene transfer (LGT) events. The phylogenetic analyses showed at least 10 clusters corresponding to a combination of substrate specificity and bacterial taxonomy, but with no overriding structure based on either function or taxonomy alone. Adaptation of the enzyme to preferentially oxidize either ammonia or methane has occurred more than once. Individual phylogenies of all three genes, xmoA, xmoB and xmoC, closely matched, indicating that this operon evolved or was consistently transferred as a unit, with the possible exception of the methane monooxygenase operons in Verrucomicrobia, where the pmoB gene has a distinct phylogeny from pmoA and pmoC. Compositional analyses indicated that some clusters of xmoCAB operons (for example, the pmoCAB in gammaproteobacterial methanotrophs and the amoCAB in betaproteobacterial nitrifiers) were compositionally very different from their genomes, possibly indicating recent lateral transfer of these operons. The combined phylogenetic and compositional analyses support the hypothesis that an ancestor of the nitrifying bacterium Nitrosococcus was the donor of methane monooxygenase (pMMO) to both the alphaproteobacterial and gammaproteobacterial methanotrophs, but that before this event the gammaproteobacterial methanotrophs originally possessed another CuMMO (Pxm), which has since been lost in many species.

16.
Environ Microbiol Rep ; 10(6): 695-703, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30246403

RESUMO

Microbial species diversity may peak at certain optimal environmental conditions and decrease toward more extreme conditions. Indeed, bell-shaped relationships of species diversity against pH and temperature have been demonstrated, but diversity patterns across other environmental conditions are less well reported. In this study, we investigated the impact of salinity on the diversity of microorganisms from all three domains in a large set of natural springs with salinities ranging from freshwater to halite saturated. Habitat salinity was found to be linearly and inversely related to diversity of all three domains. The relationship was strongest in the bacteria, where salinity explained up to 44% of the variation in different diversity metrics (OTUs, Shannon index, and Phylogenetic Diversity). However, the relationship was weaker for Eukarya and Archaea. The known salt-in strategist Archaea of the Halobacteriaceae even showed the opposite trend, with increasing diversity at higher salinity. We propose that high energetic requirements constrain species diversity at high salinity but that the diversity of taxa with energetically less expensive osmotolerance strategies is less affected. Declining diversity with increasing osmotic stress may be a general rule for microbes as well as plants and animals, but the strength of this relationship varies greatly across microbial taxa.


Assuntos
Biodiversidade , Nascentes Naturais/microbiologia , Osmorregulação/fisiologia , Pressão Osmótica/fisiologia , Salinidade , Archaea/classificação , Archaea/genética , Archaea/fisiologia , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Eucariotos/classificação , Eucariotos/genética , Eucariotos/fisiologia , Microbiota/genética , Nascentes Naturais/química , RNA Ribossômico/genética , Cloreto de Sódio/metabolismo , Especificidade da Espécie
17.
Bioresour Technol ; 268: 759-772, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30064899

RESUMO

The on-going annual increase in global methane (CH4) emissions can be largely attributed to anthropogenic activities. However, as more than half of these emissions are diffuse and possess a concentration less than 3% (v/v), physical-chemical treatments are inefficient as an abatement technology. In this regard, biotechnologies, such as biofiltration using methane-oxidizing bacteria, or methanotrophs, are a cost-effective and efficient means of combating diffuse CH4 emissions. In this review, a number of abiotic factors including temperature, pH, water content, packing material, empty-bed residence time, inlet gas flow rate, CH4 concentration, as well biotic factors, such as biomass development, are reviewed based on empirical findings on CH4 biofiltration studies that have been performed in the last decades.


Assuntos
Bactérias/metabolismo , Metano/metabolismo , Biomassa , Reatores Biológicos , Filtração , Metano/isolamento & purificação , Methylococcaceae
18.
Microorganisms ; 6(3)2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29996505

RESUMO

Polycyclic aromatic hydrocarbons (PAH) such as naphthalene are widespread, recalcitrant pollutants in anoxic and methanogenic environments. A mechanism catalyzing PAH activation under methanogenic conditions has yet to be discovered, and the microbial communities coordinating their metabolism are largely unknown. This is primarily due to the difficulty of cultivating PAH degraders, requiring lengthy incubations to yield sufficient biomass for biochemical analysis. Here, we sought to characterize a new methanogenic naphthalene-degrading enrichment culture using DNA-based stable isotope probing (SIP) and metagenomic analyses. 16S rRNA gene sequencing of fractionated DNA pinpointed an unclassified Clostridiaceae species as a putative naphthalene degrader after two months of SIP incubation. This finding was supported by metabolite and metagenomic evidence of genes predicted to encode for enzymes facilitating naphthalene carboxylic acid CoA-thioesterification and degradation of an unknown arylcarboxyl-CoA structure. Our findings also suggest a possible but unknown role for Desulfuromonadales in naphthalene degradation. This is the first reported functional evidence of PAH biodegradation by a methanogenic consortium, and we envision that this approach could be used to assess carbon flow through other slow growing enrichment cultures and environmental samples.

19.
Environ Pollut ; 241: 45-54, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29793107

RESUMO

Using hybrid packing materials in biofiltration systems takes advantage of both the inorganic and organic properties offered by the medium including structural stability and a source of available nutrients, respectively. In this study, hybrid mixtures of compost with either lava rock or biochar in four different mixture ratios were compared against 100% compost in a methane biofilter with active aeration at two ports along the height of the biofilter. Biochar outperformed lava rock as a packing material by providing the added benefit of participating in sorption reactions with CH4. This study provides evidence that a 7:1 volumetric mixture of biochar and compost can successfully remove up to 877 g CH4/m3·d with empty-bed residence times of 82.8 min. Low-affinity methanotrophs were responsible for the CH4 removal in these systems (KM(app) ranging from 5.7 to 42.7 µM CH4). Sequencing of 16S rRNA gene amplicons indicated that Gammaproteobacteria methanotrophs, especially members of the genus Methylobacter, were responsible for most of the CH4 removal. However, as the compost medium was replaced with more inert medium, there was a decline in CH4 removal efficiency coinciding with an increased dominance of Alphaproteobacteria methanotrophs like Methylocystis and Methylocella. As a biologically-active material, compost served as the sole source of nutrients and inoculum for the biofilters which greatly simplified the operation of the system. Higher elimination capacities may be possible with higher compost content such as a 1:1 ratio of either biochar or lava rock, while maintaining the empty-bed residence time at 82.8 min.


Assuntos
Biodegradação Ambiental , Carvão Vegetal/química , Filtração/métodos , Metano/análise , Compostagem , RNA Ribossômico 16S , Solo
20.
Microorganisms ; 6(1)2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29509697

RESUMO

Methanotrophs are a specialized group of bacteria that can utilize methane (CH4) as a sole energy source. A key enzyme responsible for methane oxidation is methane monooxygenase (MMO), of either a soluble, cytoplasmic type (sMMO), or a particulate, membrane-bound type (pMMO). Methylocellasilvestris BL2 and Methyloferulastellata AR4 are closely related methanotroph species that oxidize methane via sMMO only. However, Methyloferulastellata is an obligate methanotroph, while Methylocellasilvestris is a facultative methanotroph able to grow on several multicarbon substrates in addition to methane. We constructed transcriptional fusions of the mmo promoters of Methyloferulastellata and Methylocellasilvestris to a promoterless gfp in order to compare their transcriptional regulation in response to different growth substrates, in the genetic background of both organisms. The following patterns were observed: (1) The mmo promoter of the facultative methanotroph Methylocella silvestris was either transcriptionally downregulated or repressed by any growth substrate other than methane in the genetic background of Methylocellasilvetris; (2) Growth on methane alone upregulated the mmo promoter of Methylocellasilvetris in its native background but not in the obligate methanotroph Methyloferulastellata; (3) The mmo promoter of Methyloferulastellata was constitutive in both organisms regardless of the growth substrate, but with much lower promoter activity than the mmo promoter of Methylocellasilvetris. These results support a conclusion that a different mode of transcriptional regulation of sMMO contributes to the facultative lifestyle of Methylocellasilvetris compared to the obligate methanotroph Methyloferulastellata.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...